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Abstract
Forests are the most valuable natural resource to protect organisms as well as ecosystem at a different level. With the rising 
change of land use and land cover pattern due to anthropogenic and natural disturbances, this resource is now subjected to 
experience constant exploitation and degradation. This paper explored the level of disturbances on forest health in Buxa Tiger 
Reserve (BTR), a foothill ecosystem of Himalaya. Sentinel-2 data (2019) and fuzzy logic models were executed to understand 
the forest health status by using different vegetation indices. GIS-based Analytical Hierarchy Process (AHP) was applied to 
know the beat-wise spatial disturbances of natural and anthropogenic factors in the study area. Then, disturbance maps were 
categorized into five zones from very high to very low. The result reveal that overall imprint of natural disturbance in BTR was 
a little bit high (very high = 13.76%, high = 31.58%, moderate = 15.91%, low = 27.03%, very low = 11.72%) in comparison to 
anthropogenic disturbance (very high = 11.09%, high = 19.07%, moderate = 24.47%, low = 20.01%, very low = 25.36%), but 
beat wise it varies significantly. Finally, the effectiveness of both disturbances on forest health was judged through correlation 
statistics. The forest beats (ID: 2, 4, 6, 7) which cover the core area of BTR have experienced less natural and anthropogenic 
disturbances with healthy and dense forest cover. On the other hand, less disturbance with poor forest health was found in 
hilly areas of buxa road and chunabhati beats (ID: 9, 15). Moreover, the effective natural and anthropogenic disturbances 
were mainly responsible to deteriorate the forest health adequately in most of the areas of BTR.
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Introduction

Forest has been recognized as a regulator of the biogeo-
chemical cycle on the planet earth and provides explicit and 
implicit benefits to humans and other organisms. Distur-
bance affects the functions of ecosystem service and causing 
a threat to biodiversity; thus, the analysis of factors behind 
the forest disturbance is a primary concern for the conser-
vationist (Jain et al. 2020; Dale et al. 2001). The impact 
of human activates on the landscape has been determined 
by the nature, intensity of disturbance and its effectiveness 
(Zipperer et al. 1990). Deforestation and degradation of 
forest resource are an inescapable problem all around the 

world subsequently due to the extension of agricultural field, 
urbanization and so on (Ouédraogo et al. 2010). To reduce 
the negative impact of human activities on natural habitats, 
in many parts of the world protected areas are delineated to 
maintain the balance of ecosystem for conservation of wild-
life and sustainable utilization of natural resources (Eken 
et al. 2004; Ikpa et al. 2009). The protected areas like reserve 
forest are stored more carbon in comparison to its surround-
ing landscape, the area lost its potentiality due to degrada-
tion and deforestation (Scharlemann et al. 2010; Kelatwang 
and Garzuglia 2006; Dimobe et al. 2015), elsewhere the 
water and atmospheric circulation of a particular landscape 
are also nourished by vegetation. Himalaya and its surround-
ing landscape are highly sensitive to geohydrology; climatic 
aspects create an impact on the sustainability of the moun-
tainous environment (IPCC 2001; Eriksson 2006; Chen and 
Lee 2003). Earthquake, landslides, soil erosion, slope fail-
ure accelerated by severe rainfall storm are common natural 
phenomena experienced by this landscape (Alexander 2008; 
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Shrestha 1997; Liu et al. 2004; Van Westen et al. 2008; 
Pande, 2016). The combined action of human and physical 
stress causes environmental degradation that becomes now a 
global concern (Byers 1985; Kienholz et al. 1984; Zimmer-
man et al. 1986). Behind the forest distress, both natural and 
anthropogenic activities are worked as responsible factors 
so far (Karanth et al. 2006; Gray et al. 2018; Hérault and 
Piponiot 2018).

Remote sensing is a powerful tool use to provide infor-
mation about recognizable features of land cover areas, e.g., 
vegetation, water, soil, etc. based on spectral reflectance 
(Sabins 1987; Lillisend and Keifer 2004). It is an impor-
tant source to monitor vegetation and changes from local to 
global level (Dimobe et al. 2015; Joshi et al. 2006; Avetisyan 
2015; Fritz et al. 2017). Numerous vegetation indices (VIs) 
are used to measure quantitative and qualitative aspects of 
vegetation based on the spectral reflectance of the sensor 
(Bannari et al. 1995). VIs are still the most effective and 
useful indicators to depict the density and growth status of 
vegetation by using spectral reflectance especially red and 
near-infrared ranges (Xiro et al. 2004; Sun et al. 2019; Joiner 
et al. 2018). Mostly, MODIS, Landsat, Sentinel data are used 
by researcher to detect biophysical and biochemical charac-
teristics of vegetation (Pearson et al. 1976; Li et al. 2017; 
Anderson 1993; Liu et al. 2012). The health of wheat crop 
has been studied by Dimitrov et al. (2019); they established 
the relationship between biophysical, biochemical variables 
with remotely sensed vegetation indices using Sentinel-2 
data. Lin et al. (2019) have evaluated that how VIs associate 
with incident carbon flux tower GPP  (GPPEC) and photo-
synthetic active radiation  (PARin) across the forest, grass-
land sites in Australia. On the other hand, a simple regres-
sion model has been used to estimate crop LAI (Leaf Area 
Index) from VIs retrieve from high-resolution optical remote 
sensing data (Liu et al. 2012). The free access of Sentinel-2 
images is used to quantify canopy LPI and chlorophyll of 
tropical forest in North India by Padalia et al. (2020). They 
also tried to find out the correlation between VIs and these 
two key variables. Gwal et al. (2020) have utilized Landsat 
8 OLI data to estimate the NPP (Net Primary Productiv-
ity) and biomass quantities in complex Himalayan terrain 
based on a random forest machine-learning algorithm. Some 
researcher has also studied on forest cover change analysis 
based on image classification at different levels (Kennedy 
et al. 2007; Huo et al. 2019; Healey et al. 2005; Huang et al. 
2010; Talukdar et al. 2019). The automated robust algorithm 
is applied by Ozdogan (2014) for examining the disturbances 
in the forest with remote sensing. Mitchell et al. (2017) high-
lighted the role of remote sensing to monitor and report for-
est degradation for the REDD + strategy. The fragmentation 
and forest density model been has used by Jain et al. (2020) 
to detect the disturbance in the Sariska Tiger Reserve of 
Rajasthan, where undisturbed areas witnessed a decrease due 

to a significant increase in anthropogenic activities. Pokhri-
yal et al. (2019) assessed vulnerability in the forested area 
of Uttarakhand and AHP was used to identify the important 
drivers of vulnerability.

The Buxa Tiger Reserve (BTR) has gone through many 
disturbances caused by natural hazards like flood, landslide 
and human activities via grazing, cutting of trees, mining 
of boulder and minerals. Thus, monitoring of disturbances 
become crucial for studying their impact on forest health and 
manage forest cover efficiently. In this paper, fuzzy logic has 
been used to monitor forest health at a different level, simul-
taneously AHP is applied to assess the level of natural and 
anthropogenic disturbances in BTR. Finally, the assessment 
of the correlation between forest health and disturbances 
helps us to detect the effectiveness of disturbances on forest 
health.

The study area

Buxa Tiger Reserve (BTR) is located in the Bengal Duars 
region of Eastern Himalayan foothills. BTR has been char-
acterized by dense and multi-tier vegetation assemblage with 
rich biodiversity. It is extended over a length of 50 km from 
east to west and 35 km from north to south. The total area of 
this tiger reserve is 760.87 sq. km., out of which 385.02 sq. 
km. is under the sanctuary and national park (Das 2012). 
The northern side of this reserve bounded by Bhutan and 
Assam borders followed by river Sankosh lies on the eastern 
side of BTR (Fig. 1). This tiger reserve is situated in the 
confluence of three bio-geographic zones, Central Himalaya 
(2C), Lower Gangetic Plains (7B) and Brahmaputra Valley 
(8A). It has played a significant role to maintain the ecologi-
cal prosperity of this region. This reserve not only protects 
the catchments of enormous rivers and streams from soil 
erosion but also acts as a carbon sink of the region. The 
downstream irrigation and rich forest resource also help the 
local people towards economic prosperity.

Materials and methods

Data acquisition and processing

Sentinel-2 satellite with Multi-Spectral Instrument carries 
13 bands from visible, near- infrared, to short wave infrared 
in different spatial resolutions of 10 m, 20 m and 60 m. Sen-
tinel-2 Level-1C (date of acquisition: 30/01/2019) product 
of the area of interest was downloaded from the Copernicus 
Open Access Hub (https:// scihub. coper nicus. eu/). The top of 
canopy reflectance of the required bands was produced using 
the Sen2Cor processor and 10 m bands were resampled to 
20 m resolution and Red, NIR and Red-edge bands were 
used accordingly to calculate different vegetation indices. 

https://scihub.copernicus.eu/
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The forest map of BTR was georeferenced to do a subset 
of imagers accordingly. Image-to-image co-registration has 
been performed to ensure better assignment of pixels in the 
respective images.

More than hundred ground data points were collected 
by hand-held Global Positioning System (GPS) device and 
images of Google Earth (2.4 m × 2.4 m) of January 2019 
have been also used to train the spectral signature of selected 
land coved area, specifically the disturbed forested area of 
BTR. ASTER GDEM2 was chosen to extract variables like 
elevation and slope. The detailed information about the 
source of datasets is listed in Table 1. All data are resam-
pled to 30 m resolution in the GIS environment for further 
analysis.

Generation of criterion maps

Now, remote sensing of vegetation has widely applied 
where spectral properties of vegetation are used as a 

proxy to understand the spatial and temporal variations 
in vegetation structure and density (Tesfaye and Awoke 
2019). Specifically, optical properties of NIR, RED and 
Red-Edge (RE) bands and their correlations are the major 
indicators of vegetation health. The two-dimensional fea-
ture space of NIR and Red in a triangular shape shows 
healthy coverage of vegetation has high reflectance 
of NIR and low reflectance in Red band with a longer 
distance from soil line (Gao et al. 2013); whereas, the 
band NIR and Red-Edge are also positively correlated 
(Fig. 2). Vegetation indices are generally classified into 
two groups, one is slope based and another one is distance 
based. The slope-based indices include NDVI, SAVI, 
TVI, RVI, etc. which are generally used widely to know 
the state and abundance of the greenness of vegetation. 
Distance-based indices are effective to cancel brightness 
of soil where vegetation is sparse such as PVI, MSAVI, 
DVI, AVI, etc. (Silleos et al. 2008). In the present study, 
eight indices are chosen from both groups to address the 

Fig. 1  A glimpse of forest sites in Buxa Tiger Reserve
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stressed and disturbed area of BTR (Table 2 and Fig. 3). 
After that, fuzzy overlay has been implemented based 
on those indices to detect the best fittest model of forest 
health.

The region of Himalayan foothills induced to experience 
both natural and anthropogenic disturbances. A total eight of 
disturbance factors are chosen in this study. The criterion maps 
of disturbance (Fig. 4) has used further in the AHP model.

Table 1  Source of different datasets used in the study

Data Description Resolution/scale Source

Vegetation Indices 
(NDVI, EVI,RVI 
etc.)

Sentinel-2 Level-1C 10 m/20 m/60 m https:// scihub. coper nicus. eu/ dhus/#/ home

Elevation ASTER- GDEM 30 m https:// earth explo rer. usgs. gov/
Slope ASTER- GDEM 30 m https:// earth explo rer. usgs. gov/
Rainfall Applied spatial interpolation method IDW 30 m Directorate of Agriculture and Irrigation, WB, IMD, CWC-

India
Soil Digitized from NATMO soil map 1:2,000,000 https:// geopo rtal. natmo. gov. in/
Drainage/river Extracted from GDEM 30 m –
Settlement Digitized from Google Earth Pro 2.4 m https:// www. google. com/ intl/ en_ in/ earth/ versi ons/# earth- 

pro
Transportation Digitized from Google Earth Pro 2.4 m https:// www. google. com/ intl/ en_ in/ earth/ versi ons/# earth- 

pro
Population Census of India 2.4 m https:// censu sindia. gov. in/

Fig. 2  Feature space responses 
of NIR, Red and Red-edge 
bands

Table 2  Detail lookout of 
vegetation indices

Index Description Formula References

NDVI Normalized difference vegetation  
index

NIR−RED

NIR+RED
Rouse et al. (1973)

SAVI Soil adjusted vegetation index 1.5 ∗
NIR−RED

NIR+RED+0.5
Huete and Jackson (1988)

TVI Triangular vegetation index
√

NIR−RED

NIR+RED
+ 0.05

McDaniel and Haas (1982)

EVI-2 Enhanced vegetation index 2.5 ∗ NIR−RED

NIR+2.4RED+1
Jiang et al. (2008)

RERVI Red-edge ratio vegetation index NIR

RE

Cao et al. (2016)

DVI Difference vegetation index NIR − RED Tucker (1979)
RVI Ratio vegetation index RED

NIR

Pearson and Miller  (1972)

MSAVI Modified soil adjusted vegetation  
index

NIR + 0.5–0.5 
√

(2NIR + 1)2 − 8(NIR − RED)

Qi et al. (1994)

https://scihub.copernicus.eu/dhus/#/home
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://geoportal.natmo.gov.in/
https://www.google.com/intl/en_in/earth/versions/#earth-pro
https://www.google.com/intl/en_in/earth/versions/#earth-pro
https://www.google.com/intl/en_in/earth/versions/#earth-pro
https://www.google.com/intl/en_in/earth/versions/#earth-pro
https://censusindia.gov.in/
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Fuzzy Logic (FL)

One of the reasonable computing tools to solve complex prob-
lems (Huanga et al. 2010) is the Fuzzy set and it was intro-
duced by Zadeh (1965). Fuzzy logic (FL) is unique in compar-
ison to other conventional methods because it allows objects 
to partially attach with multiple sets and also have multiple 
values (Donevska et al. 2012). The membership value in fuzzy 
logic denoting the degree of certainty of a set and the value 
must lie between 0 and 1. Zimmerman (1996) introduced a 
different type of combination rules for membership functions. 
An et al. (1991) and Bonham-Carter (1994) has discussed five 
fuzzy operators, namely fuzzy SUM, fuzzy AND, fuzzy OR, 
fuzzy PRODUCT and fuzzy GAMMA.

Fuzzy algebraic SUM is complementary to the fuzzy prod-
uct operator and defined as:

Fuzzy algebraic PRODUCT operator defined as:

(1)�combination = 1 −

n
∏

i=1

(1 − �
i
)

where ‘µcombination’ is the fuzzy membership function for the 
ith map, and ‘i’ = 1, 2,3, …, n maps are to be combined.

The fuzzy AND operator is equivalent to a Boolean 
AND, defined as:

The fuzzy ‘OR’ is like the Boolean OR (logical union), 
and defined as:

where µcombination is the calculated fuzzy membership func-
tion, ‘mA’ is the membership value of map A at a particular 
location and ‘mB’ is the value of map B, and so on.

The fuzzy gamma operator is defined in terms of fuzzy 
algebraic product and fuzzy algebraic sum as:

(2)�combination =

n
∏

i=1

�
i

(3)�combination = MIN(m
A,mB

,m
C
… .)

(4)�combination = MAX(m
A,mB

,m
C
… .)

Fig. 3  Spatial view of different vegetation indices in BTR; a NDVI, b SAVI, c TVI, d EVI-2, e RERVI, f DVI, g MSAVI, h RVI
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where γ is a parameter chosen in the range (0,1), and when 
γ is 1, the combination is equivalent to the fuzzy algebraic 
product and when γ is 0, it is equivalent to the fuzzy alge-
braic sum.

The class-wise membership values of vegetation indices 
are represented in Table 3 to produce a forest health map 
using fuzzy operators as SUM, PRODUCT, AND, OR, 
GAMMA (0.5,0.7,0.9).

Analytical Hierarchy Process (AHP)

The analytical hierarchy process (AHP) is a multi-criteria deci-
sion-making method based on pair-wise comparison of ele-
ments to make a hierarchical structure and develops priorities 
according to the judgments of the experts or users (Saaty 1980; 
Saaty 1990; Saaty and Vargas 2000). AHP has followed three 
basic steps. At first to set the goal or suitability into several 

(5)�combination =

[

∏n

i=1
�
i

]�[

1 −
∏n

i=1

(

1 − �
i

)

]1−� criteria and sub-criteria and assign hierarchy according to the 
relevance of the study. Once it is done, the second step is to 
judge the relative importance of individual pair of criteria. The 
importance scale ranges between 1 and 9 where 9 indicates 
extreme importance and 1 indicates equal importance. Lastly, 
AHP requires evaluating pair-wise comparison matrices, so 
that standardized eigenvector extracted from each comparison 
matrix allows to assign weight to criteria and sub-criteria. The 
eigenvalue represents the relative ranking of importance of 
each criterion. In the present study, the eigenvalue of natu-
ral and anthropogenic disturbance has been represented in 
Tables 4 and 5 using Saaty’s method (Saaty 1980).

The competence in AHP is estimated by consistency rela-
tionship (CR) which is determined using the following Eq. (6).

where CI means ‘Consistency Index’ and RI means the 
‘Random Index’.

(6)CR =
CI

RI

Fig. 4  Different factors of disturbances; under Natural as a Elevation, b Slope, c Soil types, d River channels, e Rainfall; and Anthropogenic as f 
Settlement site, g Total population, h Transportation network
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where λmax is the highest eigenvalue of the computed 
matrix and ‘n’ expresses the order of the matrix.

The natural and anthropogenic disturbances maps were 
prepared using Disturbance Index (DI) as follows;

(7)CI =
�max−n

n − 1
,

(8)DI = (W
∗

1i
× F1 +W

∗

2i
× F2 +W

∗

3i
×… n),

where  Wsi (s = 1, 2,  3) represents the weight of individual 
factor that has driven from AHP and F1, F2 are the different 
factors of disturbance.

AUC‑ROC curve

Validation is the most important step for choosing and testing 
a model. There have many statistical methods used for the 
validation of the model. In this study, the value of Area Under 
curve (AUC) of Receiver Operating Characteristic (ROC) has 
been used (Janizadeh et al. 2019; Bui et al. 2019; Pham et al. 
2019) and its mathematical expression is:

Table 3  Distribution of fuzzy membership value of vegetation indices

Forest 
health 
indices

Class value No. of pixel 
in domain

Percentage 
of domain

Fuzzy 
membership 
value

NDVI  < 0.0 358,626 4.7 0
0.0–0.242 946,162 12.4 0.2
0.242–0.317 1,529,119 20.04 0.43
0.317–0.5 2,099,868 27.52 0.85
0.5–0.802 2,696,560 35.34 1

SAVI -0.377–0.10 869,858 11.4 0
0.10–0.279 1,930,475 25.3 0.37
0.279–0.553 2,579,053 33.8 0.69
0.553–1.202 2,250,949 29.5 1

TVI 0.005–0.254 1,315,470 17.24 0.2
0.254–0.571 2,301,309 30.16 0.57
0.571–0.923 4,013,556 52.6 0.93

EVI-2 − 0.335–0.165 808,816 10.6 0.18
0.165–0.289 1,785,498 23.4 0.37
0.289–0.543 2,083,081 27.3 0.59
0.543–1.76 2,952,940 38.7 0.84

RERVI  < 0.08 450,190 5.9 0.16
0.08–0.18 1,249,849 16.38 0.41
0.18–0.26 1,442,896 18.91 0.61
0.26–0.34 2,336,409 30.62 0.89
 > 0.34 2,150,991 28.19 1

DVI  < 487 254,853 3.34 0.24
487–1379 1,556,588 20.4 0.53
1379–2270 2,342,513 30.7 0.64
 > 2270 3,476,381 45.56 0.89

RVI 0–0.56 2,505,039 32.83 0.87
0.56–1.00 4,240,177 55.57 0.16
1.00–1.674 885,119 11.6 0

MSAVI  < − 1.20 236,540 3.1 0.17
− 1.2—0.48 834,759 10.94 0.31
0.48–0.67 1,411,612 18.5 0.67
0.67–0.823 2,368,456 31.04 0.86
 > 0.80 2,778,968 36.42 0.92

Table 4  Weight assignment of natural factors based on AHP

Natural factor Weight Sub-class Score

Distance from River (km) 0.38 0.0.5 4
0.5–1 3
1–1.5 2
1.5–2 1

Elevation (m) 0.25 0–500 4
500–1000 3
1000–1500 2
 > 1500 1

Slope 0.19 0–20 4
20–40 3
40–60 2
 > 60 1

Average rainfall 0.10 3663–4180 1
4180–4764 2
4764–5423 3

Soil Type 0.08 Younger alluvial 4
Bhabar 3
Tarai 2
Brown, red, yellow 1

Table 5  Weight assignment of anthropogenic factors based on AHP

Anthropogenic factor Weight Sub-class Score

Distance from Transport network (km) 0.47 0–0.5 4
0.5–1 3
1–1.5 2
1.5–2 1

Distance from settlement (km) 0.38 0–0.5 4
0.5–1 3
1–1.5 2
1.5–2 1

Population 0.16 0–534 1
534–1438 2
1438–3678 3
3678–9242 4
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where TC denotes the number of correctly classified pixels, 
TD denotes the number of incorrectly classified pixels, A is 
the total number of deforested or disturbed pixels, B is the 
total number of forested pixels.

Modeling methodology

The methodology of this study comprises manifold phases 
as represented in Fig. 5 and briefly described as follows;

Phase I: According to the purpose of this study, remote 
sensing and other ancillary data were collected and prepared 
according to the required GIS module. Then, FL model has 
been executed using different vegetation indices to assess the 
health of the forest. The model is validated based on GPS 
points of disturbed areas of BTR.

Phase II: A spatial database of different natural and 
anthropogenic factors was prepared at this stage and the 
AHP model has been implemented to find out the spatial 
level of both type of disturbances.

(9)AUC =

�
∑

TC +
∑

TD
�

(A + B)

Phase III: After analyzing the forest health and level of 
disturbances, the assessment of forest health and beat-wise 
impacts of disturbance has been evaluated with the help of 
spatial matrix and correlation statistics.

Results

Spatial variability of forest health

The spatial health of the forest in BTR has been investi-
gated through remotely sensed data of Sentinal-2 and some 
specific spectral signatures are noticed in the degraded 
area of the forest. As in Fig. 6, the difference between NIR 
(band 8) and Red (band 4) is reduced significantly in the 
disturbed and non-forested area. Henceforth, vegetation 
indices with connection to different band algorithms are 
used further for detecting the spatial variability of forest 
health with the help of the FL model. The forest heath 
maps of different fuzzy operators (sum, product, and, or, 
gamma 0.5, 0.7, 0.9) are represented in Fig. 7.

ArcGIS 10 software was used further to classify the 
individual maps into five forest health zones (FHZs) 

Fig. 5  Detail framework of methodology used in the present study
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Fig. 6  Spatial profile of some selected bands

Fig. 7  Forest health maps of BTR based on different fuzzy operators; a Sum, b Product, c Or, d Gamma 0.9, e Gamma 0.5 f Gamma 0.7, g And
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namely, very good, good, moderate, poor and very poor. 
The predicted accuracy of FHZs of different fuzzy opera-
tors was performed on the basis of ROC curves in this 
study. A quantitative comparison of the result of different 
fuzzy operators with success rate are shown in Table 6. 
The ROC curve is plotted based on model sensitivity (true 
positive values) versus model specificity (true negative 
values) on a graph (Deleo 1993; Van Westen et al. 2003). 
The area under the curve has a value of 1 for perfect pre-
diction and below 0.5 suggests the failure of the model. 
In comparison to other fuzzy operators, gamma operators 
clearly produced better result as success rate accuracy is 
greater than 70% (Fig. 8). The best success accuracy rate 
of 86.70 is obtained from gamma operator for γ = 0.5, as it 
is very likely able to explain its success in predicting the 
observed disturbed or deforested area of BTR and around 
9% and 14% of the area found to be poor to a very poor 

health condition of the forest. As a result, this gamma 
operator (γ = 0.5) has been selected further to judge the 
effectiveness of natural and anthropogenic disturbances 
on forest health.

Disturbance regime

The ecosystem of Himalaya mountain is fragile and the 
fragmentation of forest is evident due to both natural and 
anthropogenic disturbance (Tiwari 2000; Beniston 2003). 
Soil erosion, landslide and mass wasting caused by instanced 
rainfall lead to the flooding situation in the foothills and 
downstream region. Despite natural degradation, human 
interferences via encroachment, felling, poaching of trees 
and withdrawal of boulders, debris are going on within 
the forest without the approval of the concerned authority. 
Thus, both types of disturbances are taken under considera-
tion to find out their role and effectiveness of degradation 
in BTR. The AHP overlay analysis of natural and human 
footprints reveals that both equally work together to increase 
the sensitivity of some specific area. The disturbance regime 
maps show five zones range from very low to very high 
(Fig. 9). Overall, the imprint of natural disturbance in BTR 
becomes more (High = 31.58%, very high = 13.78%) in com-
parison to anthropogenic disturbance (High = 19.07%, very 
high = 11.09%).

In recent years, remote sensing and GIS in combination 
with spatial modeling improved our ability to know the spa-
tial structure, pattern and rate of changes across the land-
scape. This study has executed a spatial matrix (Fig. 10) 

Table 6  Success rate of fuzzy operators

Operators Success rate (%) Asymptotic 
significance

Gamma0.5 86.72 0.00
Gamma0.7 73.02 0.01
Gamma0.9 78.71 0.01
Product 38.79 0.19
And 51.90 0.82
Or 50.69 0.94
Sum 42.76 0.39

Fig. 8  ROC graph representing 
curves of different operators
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with the help of geoprocessing tool like intersection and 
attributes selection in the GIS environment. The maps of a 
spatial matrix (Fig. 11) gives us a glimpse of spatial interac-
tion between natural and anthropogenic disturbances in the 
BTR area at a different level. Moreover, the analysis can 
further help to find out hotspots of disturbances located at 
different beats of a forest.

Effect of disturbances on forest health

A theoretical principle used as the framework to judge the 
real effect of disturbances on forest health is illustrated 
in Fig.  12. The spatial relationship between heath and 

disturbances has established through correlation statistics. 
If there is a negative correlation, i.e., increase of disturbance 
causes degradation of the forest health or vice versa, then 
disturbances are effective (with effect) towards deforestation. 
But when they are positively correlated with the disturbance, 
then it becomes effectless (without effect) because distur-
bances do not have a significant impact to destroy the forest 
health (Fig. 12). So, here the question of other hidden fac-
tors like illegal felling with other deforestation activity has 
come to investigate the real facts thoroughly. In this study, 
three types of effective relation were found under categories 
1, 2 and 4. Category 3 did not persist in any beats of BTR, 
where disturbance is high but the health of the forest cover 
is very good. The important beats (ID: 2, 4, 6, 7) which 
cover the national park area of BTR has noticed to observe 
a significant negative correlation between forest health and 
disturbance under the category 2. Those areas are basically 
experiencing less natural and anthropogenic disturbances 
with healthy and dense forest cover (Fig. 13). On the other 
hand, buxa hilly areas of buxa-road and chunabhati beats 
(ID: 9, 15) show positive effectless disturbances under cat-
egory 4 because the level disturbance is low but the heath 
of the forest is not so good. This kind of relationship injects 
to think critically about the findings of the research. In the 
case of beats 34 and 37, significant effectless anthropogenic 
disturbance has been observed but natural distances are sig-
nificantly effective there (Fig. 13). Moreover, most of the 
beats in BTR belong to category 1 where high natural and 
anthropogenic disturbances are responsible to deteriorate the 
forest health effectively.

Fig. 9  Spatial variation of level of natural (a) and anthropogenic (b) disturbances

Fig. 10  Spatial matrix of disturbance
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Discussion

Almost every landscape has experienced various distur-
bances at a different level. It further encourages to cause 
fragmentation of natural habitat and degradation of the eco-
system. The BTR is valued for its biodiversity and richness, 
but disturbances make it difficult for wildlife like Bengal 
Tiger to access their habitat. There has very limited study 
attempted by the researcher to establish the relationship 
between disturbance and forest health. The present research 
is addressed both with consideration of certain factors of 
disturbance and their effective impacts on some specific 
places. The location-specific hidden factors are also present 
in some of the beats (Fig. 14) around buxa hilly area across 
the border in Bhutan due to the mining activity and felling 

of trees. The dolomite mining inside the reserve resulting 
deforestation and soil erosion in upper catchments (Karlsson 
2013). The unorganized tree felling is happening in some 
areas within the reserve forest sometimes which cannot be 
matched with the footprint or imprint of the factors of distur-
bance. This study has actually found those conceal areas of 
BTR under category 4 (Figs 12 and 13) where hidden factors 
cause forest degradation. As this region is sensitive towards 
soil erosion, unorganized forest cutting can also disrupt the 
river course and create a devastating effect on biodiversity. 
Therefore, regular monitoring of forest cover and integrated 
planning with watershed management can restore the stabil-
ity of BTR.

Fig. 11  Outcome of spatial matrix shows site-specific disturbance at different levels
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Conclusion

This paper investigated the nature and level of disturbances 
on forest heath of BTR using an integrated approach. The 

geospatial technology helps to find out the distinctiveness 
of disturbances as associated with associability, connectiv-
ity and proximity of some selected variables. Most of the 
beats in BTR has experienced a different level of natural 
and anthropogenic disturbances except those beats which 
cover the core area. Moreover, the assessment of the asso-
ciation between forest health and disturbances guides us to 
find out the hidden factors like grazing, mining, poaching 
activities that took place silently within the forest. This 
kind of monitoring assessment may help further to the 
planner and policymakers for making strategies and imple-
ment an effective forest management scheme in future. 
Forest is not a static landscape; imposing one model in 
one area with some set of conditions may not work for 
other areas, and that is why we found some hidden frag-
mentation and disturbances. What is important is that an 
amendment of existing forest policy; regulations need to 
apply in a particular context and need not be universalized, 
because the situation in every area is different from others. 
Especially, the degraded or unstable area must be notified 
with special care and management strategy.Fig. 12  Workflow to study the effect of disturbance on forest health

Fig. 13  Maps of correlation represent the relation of forest health with natural (a), anthropogenic (b) disturbance
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